A mean value theorem for cubic fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mean Value Theorem for the Square of Class Numbers of Quadratic Fields

Let k be a number field. In this paper, we give a formula for the mean value of the square of class numbers times regulators for certain families of quadratic extensions of k characterized by finitely many local conditions. We approach this by using the theory of the zeta function associated with the space of pair of quaternion algebras.

متن کامل

The First Mean Value Theorem for Integrals

For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...

متن کامل

The Cubic Case of the Main Conjecture in Vinogradov’s Mean Value Theorem

We apply a variant of the multigrade efficient congruencing method to estimate Vinogradov’s integral of degree 3 for moments of order 2s, establishing strongly diagonal behaviour for 1 6 s 6 6. Consequently, the main conjecture is now known to hold for the first time in a case of degree exceeding 2.

متن کامل

Mean Value Estimates for Odd Cubic Weyl Sums

We establish an essentially optimal estimate for the ninth moment of the exponential sum having argument αx + βx. The first substantial advance in this topic for over 60 years, this leads to improvements in Heath-Brown’s variant of Weyl’s inequality, and other applications of Diophantine type.

متن کامل

A mean value theorem for systems of integrals

Abstract. More than a century ago, G. Kowalewski stated that for each n continuous functions on a compact interval [a, b], there exists an n-point quadrature rule (with respect to Lebesgue measure on [a, b]), which is exact for given functions. Here we generalize this result to continuous functions with an arbitrary positive and finite measure on an arbitrary interval. The proof relies on a ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2003

ISSN: 0022-314X

DOI: 10.1016/s0022-314x(02)00075-6